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Getting Started

dSalmon (Data Stream Analysis Algorithms for the Impatient) is a framework for analyzing data streams. Implementation of the core algorithms is done in C++, focusing on superior processing speed and allowing even vast amounts of data to be processed. Python bindings are provided to allow seamless integration in data science development.


Installation

dSalmon can be installed from PyPI using

pip3 install dSalmon





or directly from our GitHub repository [https://github.com/CN-TU/dSalmon]:

pip3 install git+https://github.com/CN-TU/dSalmon







Outlier Detectors

dSalmon provides several algorithms for detecting outliers in data streams. Usage is easiest using the Python interface, which provides an interface similar to the algorithms from scikit-learn. The following example performs outlier detection with a window size of 100 samples.

from dSalmon import outlier
import numpy as np
from sklearn.datasets import fetch_kddcup99
from sklearn.preprocessing import minmax_scale

# Let scikit-learn fetch and preprocess some stream data
kddcup = fetch_kddcup99()
X = minmax_scale(np.delete(kddcup.data, (1,2,3), 1))

# Perform outlier detection using a Robust Random Cut Forest
detector = outlier.SWRRCT(window=100)
outlier_scores = detector.fit_predict(X)
print ('Top 10 outliers: ', np.argsort(outlier_scores)[-10:])





Individual rows of the passed data are processed sequentially. Hence, while being substantially faster, the above code is equivalent to the following example.

from dSalmon import outlier
import numpy as np
from sklearn.datasets import fetch_kddcup99
from sklearn.preprocessing import minmax_scale

kddcup = fetch_kddcup99()
X = minmax_scale(np.delete(kddcup.data, (1,2,3), 1))

detector = outlier.SWRRCT(window=100)
outlier_scores = [ detector.fit_predict(row) for row in X ]
print ('Top 10 outliers: ', np.argsort(outlier_scores)[-10:])





For an overview of provided outlier detection models, consult dSalmon’s documentation [https://dsalmon.readthedocs.io/en/latest/generated/dSalmon.outlier.html].



Obtaining Sliding-Window Statistics

Concept drift frequently requires computing statistics based on the most recently observed N data samples, since earlier portions of the stream are no longer relevant for the current point in time.

dSalmon provides a StatisticsTree [https://dsalmon.readthedocs.io/en/latest/generated/dSalmon.trees.html#dSalmon.trees.StatisticsTree], which allows to compute sliding-window statistics efficiently. The following listing provides an example for usage computing the average and 75% percentile of data observed in a sliding window of length 100:

from dSalmon.trees import StatisticsTree
import numpy as np

data = np.random.rand(1000,2)

tree = StatisticsTree(window=100, what=['average'], quantiles=[0.75])
stats, sw_counts = tree.fit_query(data)
print ('Averages:', stats[:,0,:])
print ('75% percentiles:', stats[:,1,:])





StatisticsTree [https://dsalmon.readthedocs.io/en/latest/generated/dSalmon.trees.html#dSalmon.trees.StatisticsTree] allows simultaneously querying various statistics. By relying on tree-based methods, time complexity is linear in window length, paving the way for analyzing streams with large memory lengths.



Stream Scaling

Performing traditional scaling for streaming data is unrealistic, since in a practical scenario it would involve using data observed in future for scaling. Furthermore, due to concept drift, preprocessing and postprocessing for stream data frequently require scaling values with regard to recently observed values. dSalmon provides tools for these tasks, allowing to perform z-score scaling [https://dsalmon.readthedocs.io/en/latest/generated/dSalmon.scalers.html#dSalmon.scalers.SWZScoreScaler] and quantile scaling [https://dsalmon.readthedocs.io/en/latest/generated/dSalmon.scalers.html#dSalmon.scalers.SWQuantileScaler]  based on statistics observed in a sliding window. The following example performs outlier detection as demonstrated above, but uses sliding window-based z-score scaling for preprocessing:

from dSalmon import outlier
from dSalmon.scalers import SWZScoreScaler
import numpy as np
from sklearn.datasets import fetch_kddcup99

# Let scikit-learn fetch and preprocess some stream data
kddcup = fetch_kddcup99()

scaler = SWZScoreScaler(window=1000)
X = scaler.transform(np.delete(kddcup.data, (1,2,3), 1))

# Omit the first `window` points to avoid transient effects
X = X[1000:]

# Perform outlier detection using a Robust Random Cut Forest
detector = outlier.SWRRCT(window=100)
outlier_scores = detector.fit_predict(X)
print ('Top 10 outliers: ', np.argsort(outlier_scores)[-10:])







Efficient Nearest-Neighbor Queries

dSalmon uses an M-Tree [https://dsalmon.readthedocs.io/en/latest/generated/dSalmon.trees.html#dSalmon.trees.MTree] for several of its algorithms. An M-Tree is a spatial indexing data structure for metric spaces, allowing fast nearest-neighbor and range queries. The benefit of an M-Tree compared to, e.g., a KD-Tree or Ball-Tree is that insertion, updating and removal of points is fast after having built the tree.

For the development of custom algorithms, an M-Tree interface is provided for Python.
A point within a tree can be accessed either via tree[k] using the point’s key k, or via tree.ix[i] using the point’s index i. Keys can be arbitrary integers and are returned by insert(), knn() and
neighbors(). Indices are integers in the range 0...len(tree), sorted according to the points’ keys in ascending order.

KNN queries can be performed using the knn() function and range queries can be performed using the neighbors() function.

The following example shows how to modify points within a tree and how to find nearest neighbors.

from dSalmon.trees import MTree
import numpy as np

tree = MTree()

# insert a point [1,2,3,4] with key 5
tree[5] = [1,2,3,4]

# insert some random test data
X = np.random.rand(1000,4)
inserted_keys = tree.insert(X)

# delete every second point
del tree.ix[::2]

# Set the coordinates of the point with the lowest key
tree.ix[0] = [0,0,0,0]

# find the 3 nearest neighbors to [0.5, 0.5, 0.5, 0.5]
neighbor_keys, neighbor_distances, _ = tree.knn([.5,.5,.5,.5], k=3)
print ('Neighbor keys:', neighbor_keys)
print ('Neighbor distances:', neighbor_distances)

# find all neighbors to [0.5, 0.5, 0.5, 0.5] within a radius of 0.2
neighbor_keys, neighbor_distances, _ = tree.neighbors([.5,.5,.5,.5], radius=0.2)
print ('Neighbor keys:', neighbor_keys)
print ('Neighbor distances:', neighbor_distances)







Extending dSalmon

dSalmon uses SWIG [http://www.swig.org/] for generating wrapper code for the C++ core algorithms and instantiates single and double precision floating point variants of each algorithm.


Architecture

The cpp folder contains the code for the C++ core algorithms, which might be used directly by C++ projects.

When using dSalmon from Python, the C++ algorithms are wrapped by the interfaces in the SWIG folder. These wrapper functions are translated to a Python interface and have the main purpose of providing an interface which can easily be parsed by SWIG.

Finally, the python folder contains the Python interface invoking the Python interface provided by SWIG.



Rebuilding

When adding new algorithms or modifying the interface, the SWIG wrappers have to be rebuilt. To this end, SWIG has to be installed and a pip package can be created and installed  using

make && pip3 install dSalmon.tar.xz
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API Reference







	dSalmon.outlier

	Streaming outlier detection models.



	dSalmon.scalers

	Scalers for streaming data.



	dSalmon.projection

	Feature projectors.



	dSalmon.trees

	Indexing structures for fast stream data processing.









            

          

      

      

    

  

    
      
          
            
  
dSalmon.outlier

Streaming outlier detection models.

Classes







	HSTrees(window, n_estimators, max_depth[, ...])

	Streaming Half-Space Trees [TTL11].



	LODA(window[, n_projections, n_bins, ...])

	LODA [Pevny16].



	OutlierDetector()

	Base class for outlier detectors.



	RSHash(n_estimators, window, cms_w, cms_d[, ...])

	RS-Hash [SA16].



	SDOstream(k, T[, qv, x, metric, ...])

	Streaming outlier detection based on Sparse Data Observers [HIZ20].



	SWDBOR(window, radius[, metric, ...])

	Distance based outlier detection by radius.



	SWKNN(window, k[, k_is_max, metric, ...])

	Distance based outlier detection by k nearest neighbors.



	SWLOF(window, k[, simplified, k_is_max, ...])

	Local Outlier Factor [BKNS00] within a sliding window.



	SWRRCT(window[, n_estimators, float_type, ...])

	Robust Random Cut Forest [GMRS16].



	xStream(window, n_estimators, n_projections, ...)

	xStream [MLA18].







	
class dSalmon.outlier.HSTrees(window, n_estimators, max_depth, size_limit=None, float_type=<class 'numpy.float64'>, seed=0, n_jobs=-1)

	Streaming Half-Space Trees [TTL11].


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	n_estimators (int) – The number of trees in the ensemble.


	max_depth (int) – The depth of each individual tree.


	size_limit (int, optional) – The maximum size of nodes to consider for outlier scoring. If None,
defaults to 0.1*window, as described in the corresponding paper.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int) – Random seed for tree construction.


	n_jobs (int) – Number of threads to use for processing trees.
Pass -1 to use as many jobs as there are CPU cores.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.














	
class dSalmon.outlier.LODA(window, n_projections=None, n_bins=10, float_type=<class 'numpy.float64'>, seed=0, n_jobs=-1)

	LODA [Pevny16].

This detector performs outlier detection based on equi-depth histograms.
If random projections are used, this corresponds to the LODA algorithm,
otherwise behaviour corresponds to a sliding window adaptation of the
HBOS [GD12] algorithm.


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	n_projections (int, optional) – The number of random projections to use. If None,
random projections are skipped.


	n_bins (int) – The number of histogram bins.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int) – Seed for random projections.


	n_jobs (int) – Number of threads to use for processing trees.
Pass -1 to use as many jobs as there are CPU cores.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
get_window()

	Return samples in the current window.


	Returns

	
	data (ndarray, shape (n_samples, n_features)) – Samples in the current window. If n_projections is set, returns
the projected data samples.


	times (ndarray, shape (n_samples,)) – Expiry times of samples in the current window.















	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.










	
window_size()

	Return the number of samples in the sliding window.










	
class dSalmon.outlier.OutlierDetector

	Base class for outlier detectors.


	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.














	
class dSalmon.outlier.RSHash(n_estimators, window, cms_w, cms_d, s_param=None, float_type=<class 'numpy.float64'>, seed=0, n_jobs=-1)

	RS-Hash [SA16].

This outlier detector assumes that features are normalized
to a [0,1] range.


	Parameters

	
	n_estimators (int) – Number of estimators in the ensemble.


	window (float) – Window length after which samples will be pruned.


	cms_w (int) – Number of hash functions per estimator for the
count-min sketch.


	cms_d (int) – Number of bins for the count-min sketch.


	s_param (int, optional) – The s parameter of RS-Hash, which should be an estimate
of the number of samples in a sliding window.
If None, the value of window will be used for s_param,
assuming that samples arrive with an inter-arrival
time of 1.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int) – Random seed to use.


	n_jobs (int) – Number of threads to use for processing trees.
Pass -1 to use as many jobs as there are CPU cores.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.
Data in X is assumed to be normalized to [0,1].


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
get_window()

	Return samples in the current window.


	Returns

	
	data (ndarray, shape (n_samples, n_features)) – Samples in the current window.


	times (ndarray, shape (n_samples,)) – Expiry times of samples in the current window.















	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.










	
window_size()

	Return the number of samples in the sliding window.










	
class dSalmon.outlier.SDOstream(k, T, qv=0.3, x=6, metric='euclidean', metric_params=None, float_type=<class 'numpy.float64'>, seed=0, return_sampling=False)

	Streaming outlier detection based on Sparse Data Observers [HIZ20].


	Parameters

	
	k (int) – Number of observers to use.


	T (int) – Characteristic time for the model.
Increasing T makes the model adjust slower, decreasing T
makes it adjust quicker.


	qv (float, optional (default=0.3)) – Ratio of unused observers due to model cleaning.


	x (int (default=6)) – Number of nearest observers to consider for outlier scoring
and model cleaning.


	metric (string) – Which distance metric to use. Currently supported metrics
include ‘chebyshev’, ‘cityblock’, ‘euclidean’ and
‘minkowsi’.


	metric_params (dict) – Parameters passed to the metric. Minkowsi distance requires
setting an integer p parameter.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int (default=0)) – Random seed to use.


	return_sampling (bool (default=False)) – Also return whether a data point was adopted as observer.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,)










	
get_observers(time=None)

	Return observer data.


	Returns

	
	data (ndarray, shape (n_observers, n_features)) – Sample used as observer.


	observations (ndarray, shape (n_observers,)) – Exponential moving average of observations.


	av_observations (ndarray, shape (n_observers,)) – Exponential moving average of observations
normalized according to the theoretical maximum.















	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
observer_count()

	Return the current number of observers.






	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.














	
class dSalmon.outlier.SWDBOR(window, radius, metric='euclidean', metric_params=None, float_type=<class 'numpy.float64'>, min_node_size=5, max_node_size=100, split_sampling=20)

	Distance based outlier detection by radius.

When setting a threshold for the returned outlier scores to tranform
outlier scores into binary labels, results coincide with
ExactStorm [AF07], AbstractC [YRW09]
or the COD family [KGP+11].


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	radius (float) – Radius for classification as neighbor.


	metric (string) – Which distance metric to use. Currently supported metrics
include ‘chebyshev’, ‘cityblock’, ‘euclidean’ and
‘minkowsi’.


	metric_params (dict) – Parameters passed to the metric. Minkowsi distance requires
setting an integer p parameter.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	min_node_size (int, optional (default=5)) – Smallest possible size for M-Tree nodes. min_node_size
is guaranteed to leave results unaffected.


	max_node_size (int, optional (default=20)) – Largest possible size for M-Tree nodes. max_node_size
is guaranteed to leave results unaffected.


	split_sampling (int, optional (default=5)) – The number of key combinations to try when splitting M-Tree
routing nodes. split_sampling is guaranteed to leave results
unaffected.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
get_window()

	Return samples in the current window.


	Returns

	
	data (ndarray, shape (n_samples, n_features)) – Samples in the current window.


	times (ndarray, shape (n_samples,)) – Expiry times of samples in the current window.


	neighbors (ndarray, shape (n_samples)) – Number of neighbors of samples in the current
window.















	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.










	
window_size()

	Return the number of samples in the sliding window.










	
class dSalmon.outlier.SWKNN(window, k, k_is_max=False, metric='euclidean', metric_params=None, float_type=<class 'numpy.float64'>, min_node_size=5, max_node_size=100, split_sampling=20)

	Distance based outlier detection by k nearest neighbors.

When setting a threshold for the returned outlier scores to tranform
outlier scores into binary labels, results coincide with
ExactStorm [AF07], AbstractC [YRW09]
or the COD family [KGP+11].


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	k (int) – Number of nearest neighbors to consider for outlier
scoring.


	k_is_max (bool (default=False)) – Whether scores should be returned for all neighbor values
up to the provided k.
Grid search for the optimal k can be performed by setting
k_is_max=True.


	metric (string) – Which distance metric to use. Currently supported metrics
include ‘chebyshev’, ‘cityblock’, ‘euclidean’ and
‘minkowsi’.


	metric_params (dict) – Parameters passed to the metric. Minkowsi distance requires
setting an integer p parameter.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	min_node_size (int, optional (default=5)) – Smallest possible size for M-Tree nodes. min_node_size
is guaranteed to leave results unaffected.


	max_node_size (int, optional (default=20)) – Largest possible size for M-Tree nodes. max_node_size
is guaranteed to leave results unaffected.


	split_sampling (int, optional (default=5)) – The number of key combinations to try when splitting M-Tree
routing nodes. split_sampling is guaranteed to leave results
unaffected.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,) or (n_samples,k)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
get_window()

	Return samples in the current window.


	Returns

	
	data (ndarray, shape (n_samples, n_features)) – Samples in the current window.


	times (ndarray, shape (n_samples,)) – Expiry times of samples in the current window.















	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.










	
window_size()

	Return the number of samples in the sliding window.










	
class dSalmon.outlier.SWLOF(window, k, simplified=False, k_is_max=False, metric='euclidean', metric_params=None, float_type=<class 'numpy.float64'>, min_node_size=5, max_node_size=100, split_sampling=20)

	Local Outlier Factor [BKNS00] within a sliding window.


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	k (int) – Number of nearest neighbors to consider for outlier
scoring.


	simplified (bool (default=False)) – Whether to use simplified LOF.


	k_is_max (bool (default=False)) – Whether scores should be returned for all neighbor values
up to the provided k.
Grid search for the optimal k can be performed by setting
k_is_max=True.


	metric (string) – Which distance metric to use. Currently supported metrics
include ‘chebyshev’, ‘cityblock’, ‘euclidean’ and
‘minkowsi’.


	metric_params (dict) – Parameters passed to the metric. Minkowsi distance requires
setting an integer p parameter.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	min_node_size (int, optional (default=5)) – Smallest possible size for M-Tree nodes. min_node_size
is guaranteed to leave results unaffected.


	max_node_size (int, optional (default=20)) – Largest possible size for M-Tree nodes. max_node_size
is guaranteed to leave results unaffected.


	split_sampling (int, optional (default=5)) – The number of key combinations to try when splitting M-Tree
routing nodes. split_sampling is guaranteed to leave results
unaffected.









	
fit(data, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,) or (n_samples,k)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
get_window()

	Return samples in the current window.


	Returns

	
	data (ndarray, shape (n_samples, n_features)) – Samples in the current window.


	times (ndarray, shape (n_samples,)) – Expiry times of samples in the current window.















	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.










	
window_size()

	Return the number of samples in the sliding window.










	
class dSalmon.outlier.SWRRCT(window, n_estimators=10, float_type=<class 'numpy.float64'>, seed=0, n_jobs=-1)

	Robust Random Cut Forest [GMRS16].


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	n_estimators (int) – Number of trees in the ensemble.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int) – Random seed for tree construction.


	n_jobs (int) – Number of threads to use for processing trees.
Pass -1 to use as many jobs as there are CPU cores.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
get_window()

	Return samples in the current window.


	Returns

	
	data (ndarray, shape (n_samples, n_features)) – Samples in the current window.


	times (ndarray, shape (n_samples,)) – Expiry times of samples in the current window.















	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.










	
window_size()

	Return the number of samples in the sliding window.










	
class dSalmon.outlier.xStream(window, n_estimators, n_projections, depth, cms_w=5, cms_d=1000, float_type=<class 'numpy.float64'>, seed=0, n_jobs=-1)

	xStream [MLA18].


	Parameters

	
	window (int) – Window length after which the current window will be switch to
the reference window.


	n_estimators (int) – The number of chains in the ensemble.


	n_projections (int) – The number of StreamHash projections to use.


	depth (int) – The length of each half-space chain.


	cms_w (int) – Number of hash functions for the count-min sketches.


	cms_d (int) – Number of bins for the count-min sketches.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int) – Random seed for tree construction.


	n_jobs (int) – Number of threads to use for processing trees.
Pass -1 to use as many jobs as there are CPU cores.









	
fit(X, times=None)

	Process next chunk of data without returning outlier scores.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.













	
fit_predict(X, features=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	features (list, optional) – Feature names used for StreamHash. The repr() of list elements
is used as basis for hashing, hence elements do not necessarily
have to be strings. If None, range(n_features) is used as
feature names.






	Returns

	y – Outlier scores for provided input data.



	Return type

	ndarray, shape (n_samples,)










	
get_params(deep=True)

	Return the used algorithm parameters as dictionary.


	Parameters

	deep (bool, default=True) – Ignored. Only for compatibility with scikit-learn.



	Returns

	params – Dictionary of parameters.



	Return type

	dict










	
set_initial_sample(data, features=None)

	Optionally set the initial sample used for estimating the range of
projected features. If no initial sample is provided, ranges will be
estimated from the first window data points. In this case, the first
window data points are stored to construct the reference window as
soon as range estimates are available.


	Parameters

	
	data (ndarray, shape (n_samples, n_features)) – The initial sample.


	features (list, optional) – Feature names used for StreamHash. The repr() of list elements
is used as basis for hashing, hence elements do not necessarily
have to be strings. If None, range(n_features) is used as
feature names.













	
set_params(**params)

	Reset the model and set the parameters in accordance to the
supplied dictionary.


	Parameters

	**params (dict) – Dictionary of parameters.
















            

          

      

      

    

  

    
      
          
            
  
dSalmon.scalers

Scalers for streaming data.

Classes







	SWQuantileScaler(window, quantile[, float_type])

	Performs normalization so that the p-quantile of the current sliding window is mapped to 0 and the (1-p)-quantile is mapped to 1.



	SWScaler([float_type])

	Base class for sliding window scalers.



	SWZScoreScaler(window[, float_type])

	Performs z-score normalization of samples based on mean and standard deviation observed in a sliding window of length window.







	
class dSalmon.scalers.SWQuantileScaler(window, quantile, float_type=<class 'numpy.float64'>)

	Performs normalization so that the p-quantile of the current sliding
window is mapped to 0 and the (1-p)-quantile is mapped to 1. If
quantile==0, performs minmax normalization. Note that due to its
lacking robustness, minmax normalization is likely to result in unstable
results for stream data.


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	quantile (float with 0 <= quantile < 0.5) – The quantile value for computing reference values.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.









	
transform(X, times=None)

	Transform the next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	X_tr – Transformed input data.



	Return type

	ndarray, shape (n_samples, n_features)










	
transform_inplace(X, times=None)

	Transform the next chunk of data in-place. Requires
X to be a C-style contiguous ndarray.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	X_tr – Transformed input data. Equal to X.



	Return type

	ndarray, shape (n_samples, n_features)














	
class dSalmon.scalers.SWScaler(float_type=<class 'numpy.float64'>)

	Base class for sliding window scalers.


	
transform(X, times=None)

	Transform the next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	X_tr – Transformed input data.



	Return type

	ndarray, shape (n_samples, n_features)










	
transform_inplace(X, times=None)

	Transform the next chunk of data in-place. Requires
X to be a C-style contiguous ndarray.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	X_tr – Transformed input data. Equal to X.



	Return type

	ndarray, shape (n_samples, n_features)














	
class dSalmon.scalers.SWZScoreScaler(window, float_type=<class 'numpy.float64'>)

	Performs z-score normalization of samples based on mean and standard
deviation observed in a sliding window of length window.


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.









	
transform(X, times=None)

	Transform the next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	X_tr – Transformed input data.



	Return type

	ndarray, shape (n_samples, n_features)










	
transform_inplace(X, times=None)

	Transform the next chunk of data in-place. Requires
X to be a C-style contiguous ndarray.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None,
timestamps are linearly increased for
each sample.






	Returns

	X_tr – Transformed input data. Equal to X.



	Return type

	ndarray, shape (n_samples, n_features)
















            

          

      

      

    

  

    
      
          
            
  
dSalmon.projection

Feature projectors.

Classes







	LODAProjector(n_projections[, float_type, seed])

	Sparse random projections as used for by LODA [Pevny16].



	StreamHash(n_projections[, float_type, seed])

	Random projections for feature-evolving streams as used by xStream [MLA18].







	
class dSalmon.projection.LODAProjector(n_projections, float_type=<class 'numpy.float64'>, seed=0)

	Sparse random projections as used for by LODA [Pevny16].


	Parameters

	
	n_projections (int) – The dimension of the projected data.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int) – Random seed for projection.









	
transform(X)

	Perform projection of a block of data. Order of rows in X is not
important.


	Parameters

	X (ndarray, shape (n_samples, n_features)) – The input data.



	Returns

	X_tr – The projected data.



	Return type

	ndarray, shape (n_samples, n_features)














	
class dSalmon.projection.StreamHash(n_projections, float_type=<class 'numpy.float64'>, seed=0)

	Random projections for feature-evolving streams as used by
xStream [MLA18].


	Parameters

	
	n_projections (int) – The dimension of the projected data.


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.


	seed (int) – Random seed for projection.









	
transform(X, features=None)

	Perform projection of a block of data. Order of rows in X is not
important.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	features (list, optional) – Feature names used for StreamHash. The repr() of list elements
is used as basis for hashing, hence elements do not necessarily
have to be strings. If None, range(n_features) is used as
feature names.






	Returns

	X_tr – The projected data.



	Return type

	ndarray, shape (n_samples, n_features)
















            

          

      

      

    

  

    
      
          
            
  
dSalmon.trees

Indexing structures for fast stream data processing.

Classes







	MTree([metric, metric_params, float_type, ...])

	M-Tree efficient nearest-neighbor search in metric spaces.



	StatisticsTree(window[, what, quantiles, ...])

	Indexing structure for computing per-dimension statistics in a sliding window.







	
class dSalmon.trees.MTree(metric='euclidean', metric_params=None, float_type=<class 'numpy.float64'>, min_node_size=5, max_node_size=100, split_sampling=20, insert_jobs=2, query_jobs=-1, **kwargs)

	M-Tree efficient nearest-neighbor search in metric spaces.

A point within a tree can be accessed either via tree[k] using the
point’s key k, or via tree.ix[i] using the point’s index i.
Keys can be arbitrary integers and are returned by the insert, knn and
neighbors functions. Indices are integers in the range 0…len(tree), sorted
according to the points’ keys in ascending order.


	Parameters

	
	metric (string) – Which distance metric to use. Currently supported metrics
include ‘chebyshev’, ‘cityblock’, ‘euclidean’ and
‘minkowsi’.


	metric_params (dict) – Parameters passed to the metric. Minkowsi distance requires
setting an integer p parameter.


	float_type (np.float32 or np.float64) – Which floating point type to use for internal processing.


	min_node_size (int) – The minimum number of children in tree nodes. Different
parametrizations for min_node_size are guaranteed to
return identical results.


	max_node_size (int) – The maximum number of children in tree nodes. Different
parametrizations for max_node_size are guaranteed to
return identical results.


	split_sampling (int) – The number of combinations to try when splitting a node.
Different parametrizations for split_sampling are guaranteed
to return identical results.


	insert_jobs (int) – The number of additional threads to spawn for tree insertions.
Since insertions can only partially be parallelized, using
too many threads can harm performance.


	query_jobs (int) – The number of threads to use for range- and knn-queries.









	
clear()

	Remove all points from the tree.






	
copy()

	Return a copy of the tree.






	
property dimension

	




	
get_points(keys)

	Retrieve points by key, skipping non-existent entries.


	Parameters

	keys (ndarray, shape (n_samples,)) – Keys for points to query as returned by insert().



	Returns

	
	points (ndarray, shape (n_samples, n_features)) – Coordinates of queried points or all-zero vectors if
points were not found in the tree.


	found (ndarray, shape (n_samples,)) – Whether the respective keys were found in the tree.















	
insert(data)

	Insert points and return indices.


	Parameters

	data (ndarray, shape (n_samples, n_features)) – The data to be inserted.



	Returns

	indices – The indices assigned to the newly inserted data points.



	Return type

	ndarray, shape (n_samples,)










	
itok(indices=None)

	Map indices to keys.


	Parameters

	indices (ndarray or slice, optional) – Indices or slice for which to return keys. If None,
all keys are returned.



	Returns

	keys – The requested keys as numpy array.



	Return type

	ndarray










	
knn(data, k=1, sort=True, min_radius=0, max_radius=inf, reverse=False, extend_for_ties=False)

	Find the k nearest neighbors of points.


	Parameters

	
	data (ndarray, shape (n_samples, n_features)) – Points for which to perform a knn query.


	k (int) – Number of nearest neighbors to consider.


	sort (bool) – Whether the returned points should be sorted by distance.


	min_radius (double) – Minimum distance for returned neighbor points.


	max_radius (double) – Maximum distance for returned neighbor points.


	reverse (bool) – If reverse == True, return the k most distant points instead
of the k nearest neighbors.


	extend_for_ties (bool) – Whether in the case of ties more than k points should
be returned.






	Returns

	
	keys (ndarray, shape (n_total_neighbors,)) – Concatenation of keys of found neighbors.


	distances (ndarray, shape (n_total_neighbors,)) – Concatenation of distances of neighbors to the respective
query points.


	lengths (ndarray, shape (n_samples,)) – The number of neighbors returned for each point, so that
sum(length) == n_total_neighbors.















	
ktoi(keys)

	Map keys to indices.


	Parameters

	keys (ndarray) – Keys for which to return indices.



	Returns

	indices – The requested indices as numpy array.



	Return type

	ndarray










	
neighbors(data, radius)

	Return all points within a given radius.


	Parameters

	
	data (ndarray, shape (n_samples, n_features)) – Points for which the range query should be performed.


	radius (double) – Radius for the search.






	Returns

	
	keys (ndarray, shape (n_total_neighbors,)) – Concatenation of keys of neighbors within radius.


	distances (ndarray, shape (n_total_neighbors,)) – Concatenation of distances of neighbors to the respective
query points.


	lengths (ndarray, shape (n_samples,)) – The number of neighbors returned for each point, so that
sum(length) == n_total_neighbors.















	
remove(keys)

	Remove points identified by keys, skipping non-existent entries.


	Parameters

	keys (ndarray, shape (n_samples,)) – Indices of the data points to be removed.



	Returns

	found – Boolean array indicating whether the removal was successful.



	Return type

	ndarray, shape (n_samples,)














	
class dSalmon.trees.StatisticsTree(window, what=[], quantiles=[], float_type=<class 'numpy.float64'>)

	Indexing structure for computing per-dimension statistics in a sliding
window.

This implementation relies on an order statistic tree provided by Boost
for achieving O(log(window)) time complexity for quantile computation.


	Parameters

	
	window (float) – Window length after which samples will be pruned.


	what (list of strings, optional) – Which statistics to compute. Elements of what can be one of
‘sum’, ‘average’, ‘squares_sum’, ‘variance’, ‘min’, ‘max’
or ‘median’.


	quantiles (list of floats, optional) – Quantile values to compute in addition to statistics in what.
Elements should be floats in [0,1].


	float_type (np.float32 or np.float64) – The floating point type to use for internal processing.









	
fit_query(X, times=None)

	Process next chunk of data.


	Parameters

	
	X (ndarray, shape (n_samples, n_features)) – The input data.


	times (ndarray, shape (n_samples,), optional) – Timestamps for input data. If None, timestamps are linearly
increased for each sample.






	Returns

	
	statistics (ndarray, shape (n_samples, n_statistics, n_features)) – The computed statistics. Statistics for row i are evaluated
after adding row i to the sliding window.
Here, n_statistics = len(what) + len(quantiles).


	counts (ndarray, shape (n_samples)) – The lengths of the sliding window after processing each row
of X.





















            

          

      

      

    

  

    
      
          
            
  
Citing dSalmon

Peer review of a paper presenting dSalmon is pending. If you use dSalmon in your research, please cite our repository in your work:

@misc{dSalmon,
    author = {Hartl, Alexander},
    title = {{dSalmon}},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/CN-TU/dSalmon}}
}
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License

                GNU LESSER GENERAL PUBLIC LICENSE
                    Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.


This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an
Application with the Library.  The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library.  You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

d) Do one of the following:

    0) Convey the Minimal Corresponding Source under the terms of this
    License, and the Corresponding Application Code in a form
    suitable for, and under terms that permit, the user to
    recombine or relink the Application with a modified version of
    the Linked Version to produce a modified Combined Work, in the
    manner specified by section 6 of the GNU GPL for conveying
    Corresponding Source.

    1) Use a suitable shared library mechanism for linking with the
    Library.  A suitable mechanism is one that (a) uses at run time
    a copy of the Library already present on the user's computer
    system, and (b) will operate properly with a modified version
    of the Library that is interface-compatible with the Linked
    Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.
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